# 钯铋催化剂在乙炔加氢中的构效关系研究

陶鑫1,2,3 赵贵4 李玉楠1,3 田晨1,3 杜萌1,3 郭玲玲1,3 南兵1,3

黄宇营<sup>1,3</sup> 李丽娜<sup>1,3</sup>

1(中国科学院上海应用物理研究所 上海 201800)

2(中国科学院大学 北京 100049)

3(中国科学院上海高等研究院上海同步辐射光源 上海 200120)

4(上海交通大学物理科学学院原位电镜中心 上海 200240)

**摘要** 乙烯是石油化工重要的工业原料,对经济发展有着重要的影响,乙炔半加氢生产乙烯是重要化工反应。 传统的钯催化剂具有较高的活性,由于过度加氢和绿油的生成导致选择性和催化剂的催化周期低。因此,制备 出一种高活性及选择性的催化剂并借助同步辐射技术探究其反应机理变得至关重要。利用沉积-沉淀法制备了 二氧化硅负载的钯铋双金属催化剂,在乙炔半加氢反应中与传统催化剂进行催化活性及选择性方面的对比研 究。借助X射线吸收精细结构(X-ray Absorption Fine Structure,XAFS)和高角度环形暗场扫描透射电子显微镜 (High-Angle Annular Dark-Field Scanning Transmission Electron Microscopy, HAADF-STEM)等多种表征手段, 发现独特的PdBi催化剂可以有效抑制PdH<sub>x</sub>的形成,减弱氢气的裂解速度和乙烯在钯表面的吸附,抑制乙烯的 过度加氢产生副产物乙烷。新型钯铋结构催化剂及机理探索为今后制备高效的乙炔加氢制乙烯催化剂提供了 一种新的思路和手段。

关键词 X射线吸收精细结构,催化剂,二氧化硅,乙炔加氢 中图分类号 TL99,O59 DOI: 10.11889/j.0253-3219.2023.hjs.46.050101

# Investigation of the structure activity relationship of palladium-bismuth catalyst in acetylene hydrogenation

TAO Xin<sup>1,2,3</sup> ZHAO Gui<sup>4</sup> LI Yunan<sup>1,3</sup> TIAN Chen<sup>1,3</sup> DU Meng<sup>1,3</sup> GUO Lingling<sup>1,3</sup> NAN Bing<sup>1,3</sup> HUANG Yuying<sup>1,3</sup> LI Lina<sup>1,3</sup>

1(Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China)

2(University of Chinese Academy of Sciences, Beijing 100049, China)

3(Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 200120, China)

4(In-situ Center for Physical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China)

Abstract [Background] Ethylene is an important raw material in petrochemical industry. Semi-hydrogenation of acetylene in an ethylene is an industrially important process. Conventional supported monometallic Pd catalysts offer high acetylene conversion, but they suffer from very low selectivity to ethylene due to over-hydrogenation.

国家自然科学基金面上项目(No.U1932119)、上海市科技创新行动计划项目(No.22JC1403800)资助

第一作者: 陶鑫, 男, 1995年出生, 2018年毕业于湖北科技学院, 现为博士研究生, 研究方向为同步辐射 XAFS技术在催化中的应用

通信作者: 李丽娜, E-mail: lilina@sinap.ac.cn

收稿日期: 2022-10-25, 修回日期: 2023-01-20

Supported by National Natural Science Foundation of China General Program Project (No.U1932119), Shanghai Science and Technology Innovation Action Plan Project (No.22JC1403800)

First author: TAO Xin, male, born in 1995, graduated from Hubei University of Science and Technology in 2018, doctoral student, focusing on the application of synchrotron XAFS technology in catalysis

Corresponding author: LI Lina, E-mail: lilina@sinap.ac.cn

Received date: 2022-10-25, revised date: 2023-01-20

**[Purpose]** This study aims to prepare a catalyst with high acetylene conversion and simultaneous selectivity to ethylene, surpassing conventional Pd catalysts, and explore the structure activity relationship of palladium-bismuth catalyst in acetylene hydrogenation. **[Methods]** Firstly, PdBi/SiO<sub>2</sub> catalyst was synthesized via a deposition-precipitation method for industrial hydrogenation of acetylene to ethylene. Then, comparison of catalytic activity and selectivity with traditional catalysts in the semi hydrogenation reaction of acetylene was conducted. Finally, the X-ray Absorption Fine Structure (XAFS), High-Angle Annular Dark-Field Scanning Transmission Electron Microscopy (HAADF-STEM), and X-ray Energy Dispersive Spectroscopy (EDS) were employed to explore the reaction mechanism. **[Results]** Compared with the Pd catalyst, PdBi/SiO<sub>2</sub> catalyst exhibits increased reactivity at a lower temperature, with 100% acetylene conversion and 90% selectivity. **[Conclusions]** The Pd-Bi alloys structure is confirmed to effectively inhibit the formation of PdH<sub>x</sub>, weaken the cracking rate of hydrogen and the adsorption of ethylene on palladium surface, and inhibit the excessive hydrogenation of ethylene to produce by-product ethane. The simple synthesis PdBi structure provides new ideas and insights for industrial catalysts.

Key words X-ray absorption fine structure, Catalyst, SiO<sub>2</sub>, Acetylene hydrogenation

乙烯作为一种基本的石油化工产品需求量巨大,全球每年消耗约1.97亿吨。生产乙烯的传统方法是石油蒸汽裂解产生,但是需要高温和很高的生产成本<sup>[1-2]</sup>。因此,以电石(CaC<sub>2</sub>)路线为基础生产乙烯是一种很好的节约成本经济途径<sup>[3]</sup>。CaC<sub>2</sub>是一种常见的无机物,它能与水反应生成乙炔。乙炔半加氢制乙烯是一种经济有效的乙烯生产方法。

正如 Teschner 等<sup>[4]</sup>报道的那样, 钯(Pd)催化剂 的选择性差是因为乙烯加氢的势能比乙烯脱附的势 能要小。此外,在乙炔加氢过程中容易形成氢化钯 (PdH\_)<sup>[5]</sup>,表面乙烯很容易被进一步氢化为乙烷<sup>[6]</sup>。 理论上,如果减弱乙烯的吸附和PdH,的形成就可以 提高乙炔加氢的选择性。为了提高负载型 Pd 催化 剂在乙炔加氢反应中的选择性,利用一氧化碳等分 子作为修饰剂<sup>[7]</sup>,与乙烯竞争吸附位点,有利于乙烯 的解吸提高选择性。然而,CO的存在降低了氢的表 面浓度,促进了绿油的生成和催化剂的失活。另外 的方法是引入第二种金属来修饰钯催化剂的电子结 构和几何结构。例如:Ag在Pd催化剂中可以减少 氢的吸附量,抑制氢从本体向表面的扩散,减少氢化 物的产生,从而提高乙烯的选择性<sup>[8]</sup>。Cu在Pd催化 剂中减少了多配位Pd位点的数量,而多配位Pd位 点是乙烷生成和乙烯选择性低的原因<sup>[9]</sup>。这类金属 具有较高的烯烃选择性,但通常需要在高温下活化 使用,这限制了广泛的工业使用[10-11]。

引入第二种金属修饰在热催化中有着广泛的应用<sup>[12]</sup>。比如:析氢反应(Hydrogen Evolution Reaction, HER)<sup>[13]</sup>、氧化还原反应(Oxygen Reduction Reaction, ORR)<sup>[14]</sup>、氢化反应<sup>[9]</sup>、CO氧化<sup>[15]</sup>等。修饰过后的催化剂能够提高贵金属的利用率,独特的电子结构与载体之间的强相互作用提高催化剂的活性与选择性。与Pd催化剂相比,Bi对于

H原子的吸附较低<sup>[16]</sup>,容易从表面脱附。我们用沉积沉淀法将Bi与Pd一起沉淀形成了Pd-Bi独特结构负载到SiO<sub>2</sub>的催化剂。出乎意料的是,在相同负载量下Pd-Bi结构催化剂表现出较高的活性和选择性。

# 1 材料与方法

#### 1.1 试剂与仪器

本实验所用的所有化学试剂都是分析纯,并且 在使用过程中没有进一步的纯化和修饰。反应气体 购于液化空气(上海)压缩气体有限公司,直接使用 未进行其他处理。

#### 1.2 样品的制备

先将二氧化硅(SiO<sub>2</sub>)在450 ℃马弗炉中煅烧 2h,升温速率为5℃·min<sup>-1</sup>。在100 mL去离子水中 加入1gSiO<sub>2</sub>载体。用沉积沉淀法负载钯和铋,取一 定量的硝酸钯(Pd(NO<sub>3</sub>)<sub>2</sub>·2H<sub>2</sub>O)作为前驱体,钯的负 载量为1%(w/w,质量分数),溶解到10 mL的去离子 水中。取一定量的硝酸铋(Bi(NO<sub>3</sub>)<sub>3</sub>·5H<sub>2</sub>O)作为前 驱体溶液,前驱体的负载量为1%(w/w),溶解到 10 mL的去离子水中。用0.1 mol·L<sup>-1</sup>的碳酸氢钠 (NaHCO<sub>3</sub>)作为沉淀剂,逐滴加入,调节pH=7,70 ℃ 油浴3h。将沉淀物离心,用去离子水洗涤5次, 70 ℃过夜干燥,研磨将样品放在马弗炉450 ℃煅烧 2h,升温速率为5℃·min<sup>-1</sup>,得到所需催化剂,分别记 为Pd/SiO<sub>2</sub>、PdBi/SiO<sub>2</sub>。

#### 1.3 样品表征

#### 1.3.1 ICP-AES实验

电感耦合等离子体发射光谱法(Inductively Coupled Plasma-Atomic Emission Spectrometry, ICP-

AES)使用 Optima 7300 DV 仪器测定元素百分比。 将样品溶于稀硝酸,80 ℃油浴回流,10 h 后完全溶 解,取一定量的溶液测Pd和Bi的含量。

#### 1.3.2 粉末XRD实验

用 Bruker AXS D2 PHASER 在 Cu K<sub>a</sub> ( $\lambda$  = 0.154 06 nm)辐照下,用微米级氧化铝圆盘标定 2 $\theta$  角,测定了催化剂的衍射谱。研磨后,在每次测试前,催化剂被压平在石英玻璃样品夹上。衍射图谱 采集范围为10°~90°,步长为0.08°。

#### 1.3.3 氮气吸脱附实验

氮气吸附-脱附测量在77K条件下在 ASAP2020-HD88分析仪(Micromeritics Co)上进行, 空气煅烧样品(新鲜催化剂)直接用于表征。粉末样 品在真空下250 °C脱气4h后进行分析。相对压力 ( $P/P_0$ )在0.05~0.20范围内的数据Brunauer–Emmett– Teller (BET)进行计算。根据Barrett – Joyner – Halenda(BJH)方法,从等温脱附曲线计算样品的孔 径分布( $D_0$ )。

#### 1.3.4 透射电子显微镜

使用 JEOL F200 冷场发射透射电子显微镜和 HITACHI HF5000 球差校正扫描透射电子显微镜进 行高角环形暗场扫描透射(High-Angle Annular Dark-Field Scanning Transmission Electron Microscopy, HAADF-STEM)和X射线能量散射光 谱(Energy Dispersive Spectroscopy, EDS)表征,该仪 器的工作电压为200 kV。测试前把微量的样品粉 末加入无水乙醇,超声10 min,然后汲取一滴悬浊液 滴到铜网上,该铜网包覆有超薄碳膜。滴有样品的 铜 网在放入电镜样品杆之前在红外灯下干燥 10 min。

#### 1.3.5 氢气程序升温还原实验

氢气程序升温还原( $H_2$ -TPR)和乙烯程序升温 脱附( $C_2H_4$ -TPD)在Micrometrics autochem 2920化 学吸附仪用热导检测器(Thermal Conductivity Detector, TCD)检测。对于 $H_2$ -TPR,将200 mg样品 放在U形玻璃管中。用5% O<sub>2</sub>/He以10 °C·min<sup>-1</sup>升 温到300 °C,保持0.5 h,去除表面水。降到室温,切 换到5% H<sub>2</sub>/He以10 °C·min<sup>-1</sup>升温到300 °C进行H<sub>2</sub>-TPR实验,用TCD检测信号。

### 1.3.6 乙烯程序升温脱附实验

将 200 mg 样品放在 U 形玻璃管中, 通入 5% H₂/Ar 以 10 ℃·min<sup>-1</sup>升温到 300 ℃并保持 1 h还原催 化剂。切换到氦气吹扫 1 h,将温度降到-25 ℃后通 入纯乙烯,在此温度下吸附 1 h,切换到氦气以 10 ℃·min<sup>-1</sup>进行乙烯程序升温实验,用 TCD 检测 信号。

#### 1.3.7 同步辐射 XAFS 表征

在上海同步辐射光源(Shanghai Synchrotron Radiation Facility, SSRF)14W线站进行X射线吸收精细结构(X-ray Absorption Fine Structure, XAFS)测试。使用Si(311)双晶体单色仪对X射线光束进行单色化处理。为了消除高次谐波,设置25%的失谐度。测试前,将粉末样品压成直径1 cm的薄片,用Lytle 探测器荧光模式测试Pd K 边和Bi L<sub>3</sub>边的XAFS光谱。用来对比的标样Pd foil、PdO、Bi foil和Bi<sub>2</sub>O<sub>3</sub>是在透射模式下测试的。所有采集的原始XAFS数据采用IFEFFIT软件包中的ATHENA模块进行处理,采用IFEFFIT软件包的ARTEMIS模块对*K*<sup>2</sup>加权的*χ*(*k*)函数进行傅里叶变换后在*R*空间进行定量曲线拟合<sup>[17-18]</sup>。

# 1.4 催化性能测试

将 100 mg 样品(40~60 目)和 200 mg 石英砂 (40~60 目)混合装到石英管的中间。用 5% H<sub>2</sub>/Ar 混 合气,以10 ℃·min<sup>-1</sup>升温到 300 ℃还原催化剂 1 h。 切换到 Ar 气吹扫到室温,通入 1% C<sub>2</sub>H<sub>2</sub> 2% H<sub>2</sub>/Ar,以 5 ℃·min<sup>-1</sup>升温到目标温度,每个温度点保持 1 h空 速 (Gas Hourly Space Velocity, GHSV) 为 30 000 mL·h<sup>-1</sup>·g<sub>cat</sub><sup>-1</sup>。 采 用 Agilent Technologies 7890B 气相色谱配有火焰离子化监测器(Flame Ionization Detector, FID)来检测乙炔、乙烯、乙烷、 1,3丁二烯的浓度。

$$C_{2}H_{2}$$
转化率计算式为:  

$$\frac{C_{C_{2}H_{2,in}} - C_{C_{2}H_{2,in}}}{C_{C_{2}H_{2,in}}} \times 100\%$$
(1)  
 $C_{2}H_{2}$ 洗择性计算式为:

$$\left(1 - \frac{C_{C_{2}H_{6,out}} + 2C_{4,out}}{C_{C_{2}H_{2,in}} - C_{C_{2}H_{2,out}}}\right) \times 100\%$$
(2)

## 2 结果与讨论

氮气吸脱附实验提供了载体的结构信息。吸附等温线为典型的 IV 型(图1)。当分压(P/P<sub>0</sub>)在 0~1.0之间时,等温曲线也具有清晰的 H<sub>1</sub>滞回线,这可能是由于介孔内部结构的毛细凝结和蒸发所致<sup>[19]</sup>。SiO<sub>2</sub>的比表面积计算得 299.99 m<sup>2</sup>·g<sup>-1</sup>,孔体积 0.77 cm<sup>3</sup>·g<sup>-1</sup>,孔径 12.15 nm。SiO<sub>2</sub>比表面积大,催化剂的前驱体容易负载在 SiO<sub>2</sub>上。

根据ICP-AES在表1中的结果,经过沉积沉淀 法之后Pd的负载量都在1%(w/w)左右,说明Pd被 沉淀到了SiO<sub>2</sub>上。Bi的负载量也接近目标负载量, Bi也是很好地负载到载体上了。

采用X射线衍射(X-ray Diffraction, XRD)研究



**图1**  $N_2$ 吸脱附曲线(a)和载体SiO<sub>2</sub>的孔径分布(b) Fig.1  $N_2$ adsorption-desorption isotherms (a) and pore size distributions of support SiO<sub>2</sub>(b)

表1 PdBi/SiO<sub>2</sub>催化剂的元素组成 Table 1 Elemental analysis of PdBi/SiO, catalyst

|                       | · ·                    | 1 0                 |
|-----------------------|------------------------|---------------------|
| 催化剂                   | Pd的负载量                 | Bi的负载量              |
| Catalysts             | Pd loading / $\%(w/w)$ | Bi loading / %(w/w) |
| Pd/SiO <sub>2</sub>   | 0.91                   | _                   |
| PdBi/SiO <sub>2</sub> | 0.90                   | 0.81                |

了掺杂不同Bi的催化剂晶体结构。XRD 谱图给出 了从2θ在10°~80°中峰强度和位置的分布,从图2可 以看出,20.8°归属于SiO<sub>2</sub>的衍射峰,31.7°归属PdO 的衍射峰。用Scherrer公式计算出PdO的颗粒大小 为10.3 nm。从XRD 图中可以看出,Pd/SiO<sub>2</sub>新鲜焙 烧过后的样品有明显PdO的衍射峰。当加入Bi之 后,PdO的衍射峰消失,说明了Bi的加入减小了PdO 的尺寸或者使PdO的分散性变好。反应后的样品经 过了300 ℃ H<sub>2</sub>的处理以及乙炔和氢气反应都没有 出现Pd的衍射峰,Bi的引入使得Pd结构非常稳定。 然而,Pd/SiO<sub>2</sub>反应过后的样品在39.1°出现了Pd单 质的峰,反应后的样品Pd以单质形式析出来。在 PdBi/SiO<sub>2</sub>整个谱图当中并没有发现Bi<sub>2</sub>O<sub>3</sub>的峰,Bi的 颗粒可能太小而检测不到或者有极好的分散性。这



图 2 Pd/SiO<sub>2</sub>和PdBi/SiO<sub>2</sub>的XRD谱图 Fig.2 XRD patterns of Pd/SiO<sub>2</sub> and PdBi/SiO<sub>2</sub>

个有趣的现象说明,Bi的加入有利于提高Pd的分散性,也有可能进入PdO的晶格里面形成Pd-O-Bi独特结构催化剂,Bi金属的引入极大修饰了PdO的尺寸。为了证明这个观点,我们采用环形暗场扫描透射电子显微镜(HAADF-STEM)研究了Pd在SiO<sub>2</sub>上的分散。从图3(a)可以看出,SiO<sub>2</sub>主要是无定形的,在SiO<sub>2</sub>上有小的亮点。图3(b)采用高倍电镜,可见在SiO<sub>2</sub>的表面上PdO分散性好,以大颗粒的形式存在SiO<sub>2</sub>的表面。由于PdBi/SiO<sub>2</sub>颗粒较小,用球差校正扫描透射电子显微镜进行高角环形暗场像表征



图 3 HAADF-STEM 图 (a, b) Pd/SiO<sub>2</sub>, (c, d) PdBi/SiO<sub>2</sub>, (e) PdBi/SiO<sub>2</sub>催化剂的EDS线扫结构 Fig.3 HAADF-STEM images (a, b) Pd/SiO<sub>2</sub>, (c, d) PdBi/ SiO<sub>2</sub>, (e) Linear scan EDS spectra of the catalyst PdBi/SiO<sub>2</sub>

PdBi/SiO<sub>2</sub>,从图 3(c、d)可以看出,PdBi/SiO<sub>2</sub>颗粒的 大小为5.2 nm。我们对其中的一个颗粒做了线扫做 元素分析发现,Pd和Bi之间的强度差不多可以证明 颗粒是由PdBi两种元素形成的独特结构催化剂。

为了进一步验证 PdBi物种的结构,将 PdBi/SiO<sub>2</sub> 样品用 5% H<sub>2</sub>/Ar在 300 °C处理 1 h,然后在 N<sub>2</sub>手套箱 中进行压片处理,将样品记为 PdBi/SiO<sub>2</sub>-Activation。 我们用 XAFS 谱来研究 PdBi/SiO<sub>2</sub>和 Pd/SiO<sub>2</sub>以及 4个标样 Pd foil、PdO、Bi foil和 Bi<sub>2</sub>O<sub>3</sub>。X射线吸收近 边结构(X-ray Absorption Near Edge Structure, XANES)光谱表明,PdBi/SiO<sub>2</sub>和 Pd/SiO<sub>2</sub>与 PdO 的近 边接近说明 Pd 的价态是接近 2 价(图 4(a))。采用 Pd foil和 PdO 的标样,对相应的 XANES 进行线性组 合拟合,确定其 Pd/SiO<sub>2</sub>和 PdBi/SiO<sub>2</sub>中 Pd 的平均氧 化均为+2 价(0% Pd 和 100% PdO)(图 4(a、b))。采 用 Bi foil和 Bi<sub>2</sub>O<sub>3</sub>的标样,对相应的 XANES 进行线 +2.7 价(8.7% Bi 和 91.3% Bi<sub>2</sub>O<sub>3</sub>)(图 4(c))。 PdBi/ SiO,-Activation中Bi的平均价态为+0.6价(77.5%Bi 和22.5% Bi<sub>2</sub>O<sub>2</sub>)(图4(d))。如图5所示,傅里叶变换 (FT)K<sup>2</sup>加权扩展X射线吸收精细结构(EXAFS)提 供了样品的配位结构。表2中,Pd/SiO,中R=2.02Å, CN=4, PdBi/SiO<sub>2</sub>中, R=2.01 Å, CN=3.5。Bi的加入 对第一壳层Pd-O无影响,而Pd/SiO,在第二壳层Pd-O-Pd 中 CN=10。在 PdBi/SiO, 第二壳层拟合出 Pd-O-Bi而不是 Pd-O-Pd, 其中 Pd-O-Bi 的配位数 CN= 1.7。Bi的引入降低了第二壳层的配位数,进入了 PdO里面形成了Pd-O-Bi结构。低配位数的Pd可以 提高乙炔加氢的选择性<sup>[9]</sup>。为了探究Bi在上面影 响,拟合了Bi的第一壳层,Bi-O中CN=4,没有Bi-O-Bi壳层,Bi在Pd表面上是以单原子的形式存在的。 PdBi/SiO<sub>2</sub>-Activation 中形成了 Bi-Pd 键,其中 R=2.79 Å, CN=3.5。证明了在经过300 ℃的H2处理 后,Pd与Bi之间形成了Bi-Pd独特结构的催化剂。

表2 钯和铋价态(δ)PdBi/SiO<sub>2</sub>中Pd K边和Bi的L<sub>3</sub>边EXAFS 拟合数据 Table 2 Oxidation state of palladium and bismuth (δ) Curvefit parameters for Pd K-edge and Bi L<sub>3</sub>-edge EXAFS for PdBi/SiO<sub>3</sub>

|                                   |     |       | -                |                    |                                |                              |
|-----------------------------------|-----|-------|------------------|--------------------|--------------------------------|------------------------------|
| 样品 Sample                         | δ   | Shell | CN <sup>a)</sup> | $R$ / Å $^{ m b)}$ | $\sigma^2$ / Å <sup>2 c)</sup> | $\Delta E_0$ / eV $^{ m d)}$ |
| Pd/SiO <sub>2</sub>               | 2   | Pd-O  | 3.9±0.1          | 2.02±0.01          | 0.003                          | 0.4±1.0                      |
|                                   |     | Pd-Pd | 4.3±0.3          | $3.05 \pm 0.01$    | 0.006                          |                              |
|                                   |     | Pd-Pd | $5.0{\pm}0.5$    | 3.45±0.01          |                                |                              |
| PdBi/SiO <sub>2</sub>             | 2   | Pd-O  | 3.5±0.2          | $2.01 \pm 0.01$    | 0.003                          | $1.7{\pm}1.1$                |
|                                   |     | Pd-Bi | $1.7\pm0.4$      | $3.38 \pm 0.01$    | 0.006                          |                              |
| PdBi/SiO <sub>2</sub> -activation | 0.6 | Bi-Pd | $10.1{\pm}1.2$   | 2.79±0.03          | 0.008                          | 7.4±2.8                      |
|                                   |     | Bi-Bi | 2.6±0.8          | $3.09 \pm 0.02$    | 0.009                          |                              |

注:3.0≤K≤11.0Å<sup>-1</sup>, 1.0≤R≤4.0Å a)配位数,b)散射距离,c)无序度,d)能量原点的位移

Notes:  $3.0 \le K \le 11.0 \text{ Å}^{-1}$ ,  $1.0 \le R \le 4.0 \text{ Å}^{-1}$  a) The coordination numbers, b) Average absorber-back scatterer distance, c) Debye-Waller factor, d) Inner potential correction

对催化剂进行乙炔半加氢性能测试,结果如图 6所示。Pd/SiO<sub>2</sub>在30℃下转化率达到80%,选择性 却不到60%。当温度提高到50℃时,乙炔的转化率 达到了100%,实现了完全转化,乙烯的选择性却只 有36.4%。随着温度的提高,乙炔的转化率不变,乙 烯选择性逐渐降低。PdBi/SiO<sub>2</sub>催化剂温度达到 50℃时,乙炔的转化率降低到50%,而乙烯的选择 性提高到93.4%。随着温度的提高,乙炔转化率逐 渐提高而乙烯选择性缓慢降低。我们要探究在乙炔 完全转化时乙烯的选择性,在100℃的时候,PdBi/ SiO<sub>2</sub>实现了完全转化且选择性在90%以上,说明了 Bi的加入虽然降低了转化率但是提高了选择性,避 免了乙炔过度加氢生成乙烷。为了进一步说明Bi 的加入对催化剂还原温度的影响,H<sub>2</sub>-TPR 实验中 SiO<sub>2</sub>上没任何峰,说明载体是惰性材料没有还原性。 Pd/SiO<sub>2</sub>在48.9 ℃左右的氢气吸收是由于发生了 PdO到PdH<sub>4</sub>的还原,这是因为在Pd的表面上形成了 氢溢流现象<sup>[20]</sup>。我们发现加入了Bi之后,PdBi/SiO<sub>2</sub> 在100 ℃只有PdO的峰没有氢溢流现象,氢溢流现 象的消失是选择性提高的原因。C<sub>2</sub>H<sub>4</sub>-TPD是为了 探究 C<sub>2</sub>H<sub>4</sub>在催化剂表面的脱附能力,Pd/SiO<sub>2</sub>和 PdBi/SiO<sub>2</sub>乙烯脱附的温度分别为77.8 ℃和88.9 ℃, 证明了Bi的加入降低了乙烯的脱附温度。在乙炔 加氢生成乙烯过程中,PdBi/SiO<sub>2</sub>表面生成了乙烯之 后更容易脱附掉,避免了乙烯吸附于表面加氢生成 乙烷降低了选择性。



图4 Pd/SiO<sub>2</sub>样品中PdK边的近边拟合 (a) Pd/SiO<sub>2</sub>,(b) PdBi/SiO<sub>2</sub>、PdBi/SiO<sub>2</sub>中BiL<sub>3</sub>边的近边拟合,(c) PdBi/SiO<sub>2</sub>,(d) PdBi/SiO<sub></sub>

**Fig.4** The linear combination fitting reasults of Pd K edge of catalysts (a) Pd/SiO<sub>2</sub>, (b) PdBi/SiO<sub>2</sub>, the linear combination fitting reasults of Bi L<sub>3</sub> edge of catalysts, (c) PdBi/SiO<sub>2</sub>, (d) PdBi/SiO<sub>2</sub>-activation



图5 Pd/SiO<sub>2</sub>样品中Pd K 边近边吸收(a)与扩展边结构(b),PdBi/SiO<sub>2</sub>样品中Bi的L<sub>3</sub>边近边吸收(c)与扩展边结构(d) Fig.5 XANES profiles (a) and EXAFS spectra (b) of the Pd/SiO<sub>2</sub> catalysts, XANES profiles of Bi L<sub>3</sub> in PdBi/SiO<sub>2</sub> (c) and EXAFS spectra of Bi (d)



图6 催化剂性能评价 (a) Pd/SiO<sub>2</sub>和PdBi/SiO<sub>2</sub>乙炔转化率随着温度的变化, (b) Pd/SiO<sub>2</sub>和PdBi/SiO<sub>2</sub>乙烯选择性随温度的变化,(c) H<sub>2</sub>-TPR,(d) C<sub>2</sub>H<sub>4</sub>-TPD Fig.6 Catalyst perform (a) C<sub>2</sub>H<sub>2</sub> conversion and (b) C<sub>2</sub>H<sub>4</sub> selectivity as a function of temperature over the different catalysts, (c) H<sub>2</sub>-TPR, (d) C<sub>2</sub>H<sub>4</sub>-TPD

#### 3 结语

利用沉积沉淀法成功将Pd和Bi沉淀到SiO<sub>2</sub>的 表面。PdBi/SiO<sub>2</sub>具有更高的乙炔选择性加氢活性 和乙烯选择性。PdBi独特结构催化剂的形成极大 提高了贵金属的原子利用率。由于Bi对H原子的 吸附差,H<sub>2</sub>在Pd表面裂解形成H原子溢流到Bi的表 面脱附出去避免了PdH<sub>x</sub>的形成,C<sub>2</sub>H<sub>4</sub>在催化剂表面 避免过度加氢形成C<sub>2</sub>H<sub>6</sub>,提高了催化剂的选择性。 这些实验结果为Bi对Pd促进工业应用创造了更多 的潜力。

**致谢** 感谢上海光源 BL11B 线站老师在光路优化 和 XAFS 实验过程中给予的帮助,感谢上海光源用 户辅助实验组给予实验的支持,感谢上海交通大学 原位电镜中心在球差电镜的实验支持。

**作者贡献说明** 陶鑫负责研究的提出及设计、数据 的收集和整理、文章的起草和最终版本的修订;赵贵 负责电镜的拍摄;李玉楠负责样品的合成;田晨负责 吸收谱的表征;杜萌负责活性测试;郭玲玲、南兵负 责数据解析;黄字营、李丽娜负责最终版本的修订。

#### 参考文献

- Schbib N S, García M A, Gígola C E, *et al.* Kinetics of front-end acetylene hydrogenation in ethylene production [J]. Industrial & Engineering Chemistry Research, 1996, 35(5): 1496 - 1505. DOI: 10.1021/ie950600k.
- 2 Kang J H, Shin E W, Kim W J, et al. Selective hydrogenation of acetylene on Pd/SiO<sub>2</sub> catalysts promoted with Ti, Nb and Ce oxides[J]. Catalysis Today, 2000, 63 (2 - 4): 183 - 188. DOI: 10.1016/s0920-5861(00)00458-2.
- 3 Trotuş I T, Zimmermann T, Schüth F. Catalytic reactions of acetylene: a feedstock for the chemical industry revisited[J]. Chemical Reviews, 2014, 114(3): 1761 -1782. DOI: 10.1021/cr400357r.
- Teschner D, Borsodi J, Wootsch A, *et al.* The roles of subsurface carbon and hydrogen in palladium-catalyzed alkyne hydrogenation[J]. Science, 2008, **320**(5872): 86 89. DOI: 10.1126/science.1155200.
- 5 Tew M W, Miller J T, van Bokhoven J A. Particle size effect of hydride formation and surface hydrogen adsorption of nanosized palladium catalysts: L<sub>3</sub> edge vs K edge X-ray absorption spectroscopy[J]. The Journal of Physical Chemistry C, 2009, **113**(34): 15140 - 15147. DOI: 10.1021/jp902542f.

- 6 Niu Y M, Liu X, Wang Y Z, et al. Visualizing formation of intermetallic PdZn in a palladium/zinc oxide catalyst: interfacial fertilization by PdH<sub>x</sub>[J]. Angewandte Chemie (International Ed in English), 2019, **58**(13): 4232 - 4237. DOI: 10.1002/anie.201812292.
- Nikolaev S A, Zanaveskin L N, Smirnov V V, et al. Catalytic hydrogenation of alkyne and alkadiene impurities from alkenes. practical and theoretical aspects [J]. Russian Chemical Reviews, 2009, 78(3): 231 - 247. DOI: 10.1070/rc2009v078n03abeh003893.
- 8 Pei G X, Liu X Y, Wang A Q, et al. Ag alloyed Pd singleatom catalysts for efficient selective hydrogenation of acetylene to ethylene in excess ethylene[J]. ACS Catalysis, 2015, 5(6): 3717 - 3725. DOI: 10.1021/ acscatal.5b00700.
- 9 Kyriakou G, Boucher M B, Jewell A D, et al. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations[J]. Science, 2012, 335 (6073): 1209 - 1212. DOI: 10.1126/science.1215864.
- 10 Trimm D L, Liu I O Y, Cant N W. The selective hydrogenation of acetylene over a Ni/SiO<sub>2</sub> catalyst in the presence and absence of carbon monoxide[J]. Applied Catalysis A: General, 2010, **374**(1 2): 58 64. DOI: 10. 1016/j.apcata.2009.11.030.
- 11 Trimm D L, Cant N W, Liu I O Y. The selective hydrogenation of acetylene in the presence of carbon monoxide over Ni and Ni-Zn supported on MgAl<sub>2</sub>O<sub>4</sub>[J]. Catalysis Today, 2011, **178**(1): 181 – 186. DOI: 10.1016/j. cattod.2011.06.025.
- Mao J J, Yin J S, Pei J J, *et al.* Single atom alloy: an emerging atomic site material for catalytic applications[J]. Nano Today, 2020, 34: 100917. DOI: 10.1016/j.nantod. 2020.100917.
- 13 Chen C H, Wu D Y, Li Z, et al. Ruthenium-based single-

atom alloy with high electrocatalytic activity for hydrogen evolution[J]. Advanced Energy Materials, 2019, **9**(20): 1803913. DOI: 10.1002/aenm.201803913.

- Cheng X, Wang Y S, Lu Y, *et al.* Single-atom alloy with Pt-Co dual sites as an efficient electrocatalyst for oxygen reduction reaction[J]. Applied Catalysis B: Environmental, 2022, **306**: 121112. DOI: 10.1016/j. apcatb.2022.121112.
- 15 Liu J L, Lucci F R, Yang M, et al. Tackling CO poisoning with single-atom alloy catalysts[J]. Journal of the American Chemical Society, 2016, **138**(20): 6396 - 6399. DOI: 10.1021/jacs.6b03339.
- 16 Huang P, Cheng Z, Zeng L, *et al.* Holey reduced graphene oxide-assisted oxide-derived Bi for efficient nitrogen electroreduction[J]. Journal of Materials Chemistry A, 2022, **10**(15): 8245 - 8251. DOI: 10.1039/D2TA00673A.
- Newville M. IFEFFIT: interactive XAFS analysis and FEFF fitting[J]. Journal of Synchrotron Radiation, 2001, 8 (Pt 2): 322 - 324. DOI: 10.1107/s0909049500016964.
- 18 Ravel B, Newville M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT[J]. Journal of Synchrotron Radiation, 2005, 12(Pt 4): 537 - 541. DOI: 10.1107/ S0909049505012719.
- 19 Sun X, Su H J, Lin Q Q, *et al.* Au/Cu-Fe-La-Al<sub>2</sub>O<sub>3</sub>: a highly active, selective and stable catalysts for preferential oxidation of carbon monooxide[J]. Applied Catalysis A: General, 2016, **527**: 19 – 29. DOI: 10.1016/j. apcata.2016.08.014.
- Padmasri A. Novel calcined Mg-Cr hydrotalcite supported Pd catalysts for the hydrogenolysis of CCl<sub>2</sub>F<sub>2</sub>[J]. Journal of Molecular Catalysis A: Chemical, 2002, 181(1 - 2): 73 - 80. DOI: 10.1016/s1381-1169(01)00346-6.